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Bohr’s principle of complementarity predicts that in a welcher weg (“which-way”) 

experiment, obtaining fully visible interference pattern should lead to the 

destruction of the path knowledge. Here we report a failure for this prediction in 

an optical interferometry experiment. Coherent laser light is passed through a 

dual pinhole and allowed to go through a converging lens, which forms well-

resolved images of the respective pinholes, providing complete path knowledge. A 

series of thin wires are then placed at previously measured positions corresponding 

to the dark fringes of the interference pattern upstream of the lens. No reduction 

in the resolution and total radiant flux of either image is found in direct 

disagreement with the predictions of the principle of complementarity.  
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1. Inroduction 

 The wave-particle duality has been at the heart of quantum mechanics since its 

inception. The celebrated Bohr-Einstein debate revolved around this issue and was the 

starting point for many experiments conducted during the past few decades. Einstein 

believed that one could confirm both wave-like and particle-like behaviours in the same 

interferometry experiment. Using a movable double-slit arrangement, he argued that it 

should be possible to obtain welcher-Weg or which-way information (WWI) for an 

electron landing on a bright fringe of an interference pattern (IP) “to decide through 

which of the two slits the electron had passed” [1]. Although Einstein ultimately failed 

to achieve this goal, his logical consistency argument (LCA) was the initial motivation 

behind Bohr’s Principle of Complementarity (PC) [1]. The general formulation of LCA, 

in the context of the double-slit experiment, could read as follows: 

(I) Perfectly visible IP implies that the quantum passed through both slits (sharp 

wave-like behaviour). 

(II) Complete WWI implies that the quantum passed through only one of the slits 

(sharp particle-like behaviour). 

(III) Satisfaction of both (I) and (II) in a single experimental setup is a logical 

impossibility, since (I) and (II) are mutually exclusive logical inferences. 

Bohr famously avoided the logical impasse mentioned in (III) by applying 

Heisenberg’s uncertainty principle to the experimental setup [2], showing that under any 

particular experimental configuration one can only achieve (I) or (II), and never both. 

In Bohr’s own words: “…we are presented with a choice of either tracing the path of the 

particle, or observing interference effects…we have to do with a typical example of 

how the complementary phenomena appear under mutually exclusive experimental 
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arrangements” [1]. Several recent experiments [3-9], however, suggest independence of 

the interferometric complementarity from the uncertainty principle; hence, we shall only 

discuss the limitations of PC in this Letter. 

A quantitative formulation for which-way detection has been developed on the 

basis of theoretical [10-15] and experimental [9, 16-19] investigations of PC during the 

past two decades, leading to a wave-particle duality relation covering both sharp and 

intermediate stages expressed as:  

122 ≤+ KV ,         (1) 

where the two complementary measurements are 0 � V � 1, the visibility or contrast of 

the IP, and 0 � K � 1 the which-way knowledge corresponding to WWI. The visibility is 

given by 

 V )/()( minmaxminmax IIII +−= ,         (2) 

where maxI  is the maximum intensity of a bright fringe and minI  is the minimum 

intensity of the adjacent dark fringe, so that V=1 when the fringes are perfectly visible 

(sharp wave-like behaviour), and V =0 when there is no discernible IP.  By analogy, for 

the which-way knowledge, K =1 when the WWI is fully obtained (sharp particle-like 

behaviour), and K =0 when the origin of the quantum cannot be distinguished.  

It is noteworthy to mention that quantum mechanics does not forbid the presence of 

non-complementary wave and particle behaviours in the same experimental setup. What 

is forbidden is the presence of sharp complementary wave and particle behaviours in the 

same experiment. Such complementary observables are those whose projection 

operators do not commute [20]. 
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In this Letter we shall only investigate sharp complememtary wave and particle 

behaviours explicitly forbidden by PC in the same experiment. Therefore, intermediate 

conditions, where 0 < V < 1, and 0 < K < 1 shall not be covered. We assume full validity 

for quantum mechanical formalism, and make use of it to test the predictions of PC as a 

particular interpretation of quantum mechanics. Finally, although in our experiments we 

have not used a coherent single-photon source, it is expected that exactly the same 

results would be obtained if such a source is used. 

2. Conventional measurements of complementary observables 

 2.1 A modern version of the principle of complementarity 

We can take advantage of the recent developments in the debate over the PC to update 

the definition of interferometric complementarity. Based on Eq. (1) a modern version of 

the orthodox PC-the contemporary principle of complementarity (CPC)-can be 

formulated as follows: 

In any particular experimental arrangement, 

 (i) If V=1, then K=0. 

 (ii) If K=1, then V=0. 

It is clear from CPC (i) that in any welcher weg experiment, obtaining full visibility for 

the IP should lead to a complete loss of the WWI for the quanta.  

2.2 Destructive measurement of IP visibility 

In the first experiment, we test the validity of CPC(i) in a conventional manner. 

As shown in Fig. 1(a), coherent and highly stable laser light of wavelength λ = 650 nm 
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impinges upon a dual pinhole with a center-to-center distance of a =2000 µm and 

pinhole diameters of b = 250 µm. Two diffracted beams represented by wave functions 

1Ψ  and 2Ψ  emerge. The overlapping diffraction patterns of the beams caused by the 

corresponding pinholes are apodized (see Appendix A,) by passing the light through an 

aperture stop (AS) permitting only the maximal Airy disks of radius s = 10.4 mm to 

pass, thus eliminating higher order diffraction rings. A photosensitive surface is placed 

at plane 1σ  at a distance l = 400 cm from the dual pinhole, and a fully visible IP (V=1), 

with peak-to-peak distance of u = 1.4 mm for the consecutive fringes, is observed as 

shown in Fig. 1(b).  

Assuming that 1ψ  and 2ψ  are the apodized wave functions, the probability 

density, or its classical equivalent, the irradiance, for the coherent superposition state 

2112 ψψψ += , is given by 

Γψψψ ++==
2

2
2

1
2

1212I ,         (3) 

where ** 2121 ψψψψΓ +=  is the usual interference term. It is clear that observing the IP 

in this configuration leads to a complete loss of WWI, because the photosensitive 

surface at 1σ destructively absorbs all of the incoming light and no further analysis can 

take place, hence K=0. Here, in conformity with Eq. 1 the complementary 

measurements are V=1, and K=0. 

For comparison, the red curve shown in Fig. 1(b) depicts the theoretical irradiance 

profile for the case V=0, where 

 
2

2
2

112
~

ψψ +=I          (4) 

is the irradiance for the decoherent state, which clearly lacks any interference fringes. 
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2.3 Destructive measurement of WWI 

The application of a converging lens for which-way detection has a long history 

and is already implicit in the classic “Heisenberg’s microscope” proof of the uncertainty 

principle, where the spatial resolution of the lens x∆ , enters directly into the uncertainty 

relation hxpx ~.∆∆ [2, 21,22]. Wheeler [23] has used the lens explicitly for which-way 

detection in a proposed welcher weg experiment, such that photons registered at each 

image of the two slits are assumed to have passed through the corresponding slit, thus 

providing WWI. 

In our second experiment, as shown in Fig. 2(a), we remove the photosensitive 

surface at 1σ , and allow the light to pass through a suitable converging lens (L), here, 

with a focal length f = 100 cm and effective diameter of d = 30 mm, placed at a distance 

p = 420 cm from the pinholes, which then forms two well-resolved images (1´ and 2´) 

of the corresponding pinholes (1 and 2) at the image plane 2σ at a distance of q = 138 

cm from the lens. The image data collected at 2σ is shown in Fig. 2(b) in black. The 

theoretical spatial resolution of the lens in this experiment is � ≈ 30 µm, which matches 

well with the observation. Less than 10-6 of the peak value irradiance from either image 

is found to enter the other channel, essentially providing K=1.  For comparison, the red 

curve in Fig. 2(b) shows the theoretical irradiance profile for a K=0 case (no WWI,) 

where a single unresolved peak instead of the two well separated peaks would be 

observed. 

Again in this experiment, the photons are destructively detected at 2σ , and no 

further analysis can take place afterwards. However, Eq. 1 in conjunction with LCA(III) 

predicts a visibility of V=0 for the IP in this experiment, which entails a decoherent state 

for the two wave functions 1ψ  and 2ψ  at 1σ with a corresponding decoherent irradiance 
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distribution
2

2
2

112
~

ψψ +=I  as shown in Fig. 1(b). In contrast to 12I , in this case the 

resulting irradiance 12
~
I lacks the interference term Γ. 

In this experiment, the decoherence of the wave functions prior to entering the 

lens is a counter-intuitive conclusion dictated by PC, as it implies that the potential 

future act of obtaining WWI (the detection of the pinhole images at 2σ ) leads to the loss 

of the IP at an earlier stage (at 1σ ) in a non-local manner. As Feynman puts it, this 

situation “has in it the heart of quantum mechanics” and “contains the only mystery” of 

the theory [24]. 

3. Measurement revisited 

3.1 Critique of the orthodox concept of “measurement” 

 Measurement can be defined as a physical process by which quantitative 

knowledge is obtained about a particular property of the entity under the study. Most 

orthodox measurements of quantum systems involve the interaction of a microscopic 

quantum particle with a macroscopic classical measuring apparatus, which inevitably 

leads to an irreversible and destructive change in the property we want to measure. For 

instance, the energy of a particle can be measured by bringing it to a halt in a 

scintillator. This process irreversibly “destroys” the particle’s energy, i.e. the particle no 

longer carries the initial energy after the measurement process. Although in the so-

called quantum nondemolition measurements we can preserve a particular property after 

successive measurements, this is achieved at the expense of introducing irreversible 

perturbation to the particle’s other physical properties. What these types of destructive 

measurements have in common is that they are performed at the level of a single 

particle and lead to an irreversible change in the final quantum state of the detector. It 

is indeed impossible to obtain quantitative knowledge about a particular physical 
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property of a single particle in a non-destructive and non-perturbative manner. 

Unfortunately, in his reasoning for the necessity of the principle of complementarity, 

Bohr erroneously applies destructive measurement schemes for establishing the wave-

like behaviour of photons in a welcher weg experiment, as discussed in section 2.2 [1]. 

However, as we shall demonstrate in the next section the measurement of a multi-

particle or ensemble property need not be destructive. 

3.2 Coherence and wave-like behaviour 

Formation of an IP is aptly considered as evidence for coherent wave-like 

behaviour of quantum particles. However, whereas in classical electromagnetism a 

continuous IP would be formed no matter how weak the source, in contrast quantum 

mechanics disallows such a state due to the fact that upon arriving at the observation 

plane each quantum produces only a single dot. Figures 3(a-c) show the theoretical 

buildup of an IP from a coherent single-photon source over progressively extended 

periods of time, with 30, 300, and 3000 photons registered respectively. For 

comparison, Fig.s 3(d-f) show the decoherent photon distribution of the same number of 

photons respectively. It is impossible from the data in Fig.s 3(a) and 3(d), with only 30 

photons registered, to discern which of the two show a coherent distribution (i.e. an IP) 

or a decoherent one. It is only as larger and larger numbers of photons arrive that one 

can recognize the lack or presence of an IP. In other words, evidence for coherent wave-

like behaviour is not a single-particle property, but an ensemble or multi-particle 

property. In contrast to single-particle properties such as the arrival of a single photon at 

a particular pinhole image, which immediately provides WWI as discussed in section 

2.3, evidence for coherence involves multiple measurements. The other important 

feature of coherent behaviour is that there exist “forbidden” regions in space 

corresponding to the dark fringes, where no photons can be found. This avoidance of the 

dark fringe region is essential for the definition of an IP and its visibility. 
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3.3 Nondestructive measurement of IP visibility 

The conventional method of obtaining the visibility of an IP involves two separate 

measurements: 

1. Destructive measurement of the maximum radiant flux at a bright fringe 

in order to obtain maxI .  

2. Destructive measurement of the minimum radiant flux at a dark fringe in 

order to obtain minI .  

By substituting the values for maxI and minI in Eq. (2), V )/()( minmaxminmax IIII +−= , 

the visibility is calculated.  

The above process is necessary if V<1, however, if the IP is perfectly visible 

(V=1), then step 1 would be entirely superfluous. This is because in a perfectly visible 

IP, minI = 0, and under such a condition, Eq. (2) is reduced to 1
max

max ≡=
I

I
V , regardless of 

the actual value of maxI .  Therefore, as long as the total radiant flux of the dual pinhole 

output is nonzero (thus ensuring 0max ≠I ), all we need to establish perfect visibility is to 

determine minI =0.  

We can obtain minI = 0 in two different ways: (i) by directly measuring the flux by 

placing a very thin detector array at the dark fringe, making sure it does not obstruct the 

bright fringes, or (ii) by placing an opaque obstacle such as a thin wire at the middle of 

a dark fringe and comparing the total radiant flux before and after the obstacle. Due to 

the technical impracticality of method (i), in our experiment, we opt for method (ii). 

Fig. 4(a) shows the schematics of method (ii) where the wire is shown as a small 

dark disk in the cross-section view, and 0σ and 1σ  are parallel planes immediately 
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before and after the wire. Assuming a coherent behaviour, if we denote the distance 

between the centres of the pinholes as a, the diameter of the pinholes as b, the distance 

between the dual pinholes and 0σ as l, and the wavelength of the laser as λ, then the IP 

is bounded within an Airy disk of radius  

s = 3.833 l λ/b,           (5) 

and the distance between the peaks of each neighbouring bright fringe within the disk is  

u = l λ/a.            (6) 

The coherent irradiance is given by  

2
1212 ψ=I = [2 cos α  J1(β )/β]2,         (7) 

α = π x/u,            (8) 

β = 1.22 π x/s,           (9) 

 and J1(β ) is the Bessel function of first order and first kind [25]. For clarity, we have 

selected an IP with three bright fringes as shown in Fig. 4(b). Here we assume that the 

thickness of the wire is e = u/10 and is placed at the position x = u/2, in the middle of 

the right centremost dark fringe shown as an asterisk in Fig. 4(c) depicting the 

irradiance 12I ′ at 1σ immediately after the wire. It is clear that for the coherent case, the 

wire does not reduce the transmitted light appreciably, since it receives virtually no 

incident light such that  

121212 δ+′= �� −−

dxIdxI
s

s

s

s
,      (10) 
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0

2

1

2
1212 ≈= � dx

x

x

ψδ
,       (11) 

where x1 = (u - e)/2 and x2 = (u + e)/2. 

Therefore, denoting ��
−−

===Φ

s

s

s

s

dxIdx
22 ψψ

 for the total radiant flux (see A.4) we can 

rewrite Eq. (9) as 

121212 δ+Φ′=Φ        (12) 

 

In contrast, the situation for a decoherent distribution, where V=0 is quite different. As 

shown in Fig. 4(d), the decoherent irradiance 

12
~
I = 2 [J1 (β )/β]2,        (13) 

also bound within the same Airy disk as the coherent state [25], suffers a reduction in 

total radiant flux of 

0
~~

2

1

1212 ≠= � dx

x

x

Iδ
.       (14)  

Therefore, 

121212
~~~
δ+Φ′=Φ        (15) 
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Clearly 12
~
δ is a significant fraction of the initial decoherent total radiant flux as shown 

in Fig. 4(e).  

We know that 

��
−−

=

s

s

s

s

dxJdxJ 2
1

2
1 ]/)([2]/)(cos2[ ββββα

,                 (16) 

and using Eq.s (5-16), the relationship between the coherent and decoherent states, can 

be expressed as 

                                   12121212

~~
δ+Φ′=Φ′=Φ .        (17) 

Eq. (17) simply restates the fact that for the coherent state, the presence of the 

wire makes no significant difference in the total radiant flux entering the lens 

( 1212 Φ′=Φ ), and that it is the same as in the case when there is no wire present. This 

leads to the conclusion that the total radiant flux of the pinhole images 1′  and 2 ′  are not 

affected by the presence of the wire, if the light is in a coherent state at 1σ . In contrast, 

the same cannot be said about the decoherent state, since in this case the presence of the 

wire leads to a loss of 2/
~~~
1221 δδδ ==  in the total radiant flux of each image.  

 

3.4 Impossibility of interaction/attenuation-free diffraction by an opaque obstacle 

In the discussion of diffraction, textbooks often fail to mention that the initial 

wave function is always attenuated after interaction with the opaque obstacle which 

produces the diffraction pattern in the transmitted wave function. An opaque obstacle is 

an impenetrable barrier which has a cross section e>>λ. The interaction of a wave 

function with such an obstacle is a completely local process governed by Schrödinger 
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equation, for which a non-zero amplitude must be present at the surface of the obstacle. 

Figures 5(a-c) depict the quantum mechanical simulation of a Gaussian wave packet 

directly hitting an obstacle (here e = 30λ) and consequently being partly reflected 

backwards, and partly diffracted in the direction of initial motion. In our simulation, the 

obstacle satisfies the Dirichlet boundary condition and is assumed to be a perfect mirror, 

reflecting the incident wave function without any damping [26]. It is clear that the 

transmitted part of the wave function is greatly attenuated and contains the telltale 

diffraction “lobes”, enclosed within the dashed ellipse in Fig. 5(c). 

In contrast, Fig.s 5(d-f) show the same initial wave packet nearly missing the 

obstacle. In this scenario, the wave function interacts with only the lower surface of the 

obstacle, and therefore the reflected and diffracted portions of the wave function are 

dramatically reduced. 

Finally, Fig.s 5(g-h) depict the same initial wave packet, this time completely 

missing the obstacle. It is clear that the wave function continues to move undisturbed, 

and no diffraction takes place. This is essentially a unitary time development during 

which the norm of the wave function remains unchanged. Therefore, we can make the 

following statement: If a wave function is not attenuated after passing a region within 

which a fully opaque obstacle is placed, it is not diffracted by the obstacle, and vice-

versa: attenuation ⇔ diffraction. 

 

3.5 Formal proof of interference 

 

Now we shall formally discuss the condition in which the incident wave function 

has a large enough lateral extent along the x-axis to cover the obstacle, yet after passing 
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the obstacle, it is not attenuated (see Fig. 6.) We show that: the lack of attenuation of the 

transmitted wave function is a necessary and sufficient condition for the existence of 

destructive interference at the position of the obstacle. 

 

Theorem 1. Suppose an apodized wave function ),,( 1tzxψ localized along the x-axis 

within -s�x�s (see Appendix A) is immediately incident on an opaque obstacle of 

thickness e>>λ placed at position x=u, -s�u�s. Immediately after the obstacle, the 

transmitted wave function ),,( 2tzxψ ′ continues to move along the z-axis. The following 

relation holds: 

� ==⇔≠′=
2

1

222
00

x

x

dxψδψψ ,       (18) 

where x1 = (u - e)/2 and x2 = (u + e)/2. 

 

 Proof. We know that 0
22

≠′= ψψ , therefore  

01212 >Φ′=Φ .         (19) 

But according to Eq. (11) we have 0121212 >+Φ′=Φ δ . Therefore, we have 

� ==
2

1

2
0

x

x

dxψδ         (20) 

 

Theorem 2. For any wave function )(xψ , and a given value x=u the following holds: 

0)(0)(
2

=⇔= uu ψψ .      (21) 
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Proof. Since ψ is a complex wave function, we have for any given point within the 

wavefunction a complex vector 
θψ ieAu =)( , where A is the modulus of the complex 

number )(uψ . Since 0)( 22
== Auψ therefore A=0, which necessarily leads to 0)( =uψ . 

Therefore 0)(0)(
2

=⇔= uu ψψ . 

 

Theorem 3. For any wave function ),( yxψ , and a given value x=u, and y=v, the 

following holds: 

0),(),(),(0),(0),( 21
2

=+=�=∧> vuvuvuvuyx ψψψψψ .     (22) 

Proof. The wave function has a nonzero norm, and the particular complex vector for a 

point within the wave function is given as 0),( == θψ ieAvu . A can be written as 

0, 21
22 =+=+= BBBCBA and 0,021 ≠∧=+= nn CBCCC . We can thus construct at least 

two complex numbers 0),(,0),( 2
1

2
1

2
2

2
22

2
1

2
11 ≠+−=+=≠+= θθθ ψψ iii eCBeCBvueCBvu . It 

is clear that the sum of these two nonzero complex vectors can be written as 

0),(),(),( 21 =+= vuvuvu ψψψ , which is the superposition of two complex vectors with a 

phase difference of π. 

 

 

 

4. Experimental test of PC 

4.1 Experimental verification of a nondestructive measurement 
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Figure 7(a) depicts the essential parts of a configuration that can test the validity 

of PC. In this experiment, we use the non-arrival of photons at the dark fringes (due to 

total destructive interference), as opposed to their arrival at bright fringes (due to total 

constructive interference), as an equally valid evidence for the coherent wave-like 

behaviour. In order to magnify the shadowing effect of the wire, we place a series of six 

equidistant, parallel thin wires (shown as black dots in the cross-section view of the 

setup) of thickness e = 127 µm ≈ 0.1u ≈ 200λ in front L, at positions depicted by the 

asterisks in Fig. 1(b), corresponding to the minima of the six most central dark fringes. 

Each wire is independently placed at the middle of the selected dark fringe with an 

alignment and positional accuracy of ±0.16 µm. These wires can be considered as a 

wire grating (WG) with the same periodicity as the IP.  Fig. 7(b) shows the irradiance 

profile of the images at 2σ , while the WG is present. A comparison with the data in Fig. 

2(b) immediately demonstrates that the presence of the WG has not affected either the 

resolution or the total radiant flux of the images.  

The placement of the CCD directly at 2σ , leads to relatively large errors in the 

total radiant flux measurement. This is because the diameter of each pinhole image is 

very small and few CCD elements receive the incident light, leading to saturation and 

contamination of nearby elements. In order to increase the accuracy, we used the 

configuration shown in Fig.s 8(a-c), where mirrors placed at the image plane 2σ , further 

separate the incident beams from each pinhole and direct them into different high 

resolution CCDs 1m away from the image. This reflected light is distributed over a 

larger number of CCD elements, reducing the local irradiance and thus avoiding 

saturation-related inaccuracies.  
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Fig. 8(a) depicts the control run, where no WG is present and both pinholes are 

open. The total radiant flux CΦ of this run for image 2´ is used to normalize the 

measurements in the next two experiments. 

Fig. 8(b) shows the configuration and data for the simulation of a decoherent 

distribution of light at 1σ . One of the pinholes is closed and therefore there would be 

incident photons on the WG, which attenuates and diffracts the transmitted light 

gathered by detector D2. Using Eq.s (14) and (15), the normalized reduction in the total 

radiant flux of image of pinhole 2 for the decoherent case is given by 

R
~

=100 2

~
δ / CΦ  .       (23) 

The loss of the radiant flux due to the WG in this case is theoretically calculated 

to be 2

~
δ =Σ6 2

~
δ =Σ6 12

~
δ /2 = 6.5% of CΦ . The normalized radiant flux blocked by the 

wires is found to be R
~

= (6.6± 0.2)% by the analysis of the data, which matches the 

above theoretical value very well. Also, as expected, it is evident from the density plot 

of the D2 output that the resolution of image 2 ′  has been significantly reduced in 

comparison to that of the control case. 

4.2 Test of PC 

 In similar fashion to Eq. (24), using Eq.s (11) and (12), the normalized reduction 

in the total radiant flux of image of pinhole 2 for the coherent case is given by 

CoherentR  =100 2δ / CΦ  .      (24) 

 Fig. 8(c) shows the configuration in which both pinholes are open, and the WG 

is present. The data show that the attenuation of the transmitted light in this case is 

negligible, R = (-0.1± 0.2)% indicating that the WG has not absorbed or reflected a 
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measurable amount of light within the margin of error, thus establishing the presence of 

dark fringes at 1σ , so that V=1. It is also evident that the loss of the resolution of the 

image compared to the decoherent case is negligible. There is a very good agreement 

between the theoretical value of 0=CoherentR  and the observed value R. This is 

compelling evidence for the presence of a perfectly visible IP (V=1) just upstream of 

WG. 

5. Discussion and Conclusion 

 We have introduced a novel nondestructive measurement process for the 

visibility of the IP. In the last experiment shown in Fig. 8(c), no attenuation of the 

transmitted light, or significant reduction in the resolution of the image of pinhole 2 is 

found, although the WG is present in the path of the light. It is concluded therefore,  

that the coherent superposition state at 1σ persists (V=1) regardless of the fact that the 

WWI is obtained at 2σ in the same experiment (K=1). 

 One might be tempted to argue that the reliability of the WWI is lost due to the 

presence of the WG. However, as discussed at length in sections 3.4 and 3.5, since the 

diffraction by WG could be the only reason for the reduction of K, we have established 

no such diffraction takes place, since no attenuation in the transmitted light is observed. 

This simply means there was no light incident on the wires in the WG to diffract. 

Therefore, since no diffraction takes place, no reduction in K is possible. Thus it is 

established that in the same experiment, sharp complementary wave and particle 

behaviours can coexist so that 1222 >=+ KV , violating Eq. (1) and the PC. 

Using Eq. (24) and the observed value for R, we can define a new parameter: 

RR

RR

+

−
= ~

~
η , 10 ≤≤η .           (25) 
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If PC is correct, then in any experiment, we must find 0=η since the observed 

value for R must be that of the decoherent case R
~

, due to the fact that we find no 

reduction in the resolution of the images as shown in Fig. 7(b), so that K=1. The 

presence of a perfect IP, would result in a R=0, and therefore would lead to an ideal 

result of 1=η . Bearing in mind the margins of error in our measurements, in this 

experiment we find that 1.197.0 ≤≤η , again confirming a clear violation of PC. It is 

expected that this result can be improved upon by reducing the thickness e of the wires 

in the WG, yet maintaining the condition for opacity (e>>λ), and increasing the 

resolution and sensitivity of the CCDs. 

It is worth mentioning that since the so-called “delayed-choice” class of 

experiments [23] rely primarily on the validity PC, the results of this experiment 

demonstrate that there is really no “choice” to be made, as the coherent superposition 

state remains intact although WWI is obtained. 

 Since the arguments presented in this Letter are valid for all quantum particles, it 

is plausible that equivalent experiments could be performed involving electrons or 

neutrons with identical results to this experiment. 
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Appendix A 

The total probability of finding a photon with wave function ),,,( tzyxΨ somewhere in 

space is given by 

���
∞

∞−

∞

∞−

∞

∞−

= dzdydxtzyxtzyx
22

),,,(),,,( ΨΨ
.     (A.1) 

 In this Letter, we use the one-dimensional notation )(xΨ for simplicity of argument 

without any loss of generality and use the equivalence of the classical notion of 

irradiance and quantum mechanical probability distribution such that we have  

��
∞

∞−

∞

∞−

===Φ dxxIdxxx )()()(
22 ΨΨ

,     (A.2) 

where Φ is the total radiant flux, and I(x) is the classical irradiance at position x.  

 

Due to the practical impossibility of scanning the entire space, we employ apodization 

in our experiment for the wave functions 1Ψ and 2Ψ so that only the maximal Airy disks 

are allowed to go through the aperture stop AS and the resulting apodized wave 

functions 1ψ and 2ψ emerge. These wave functions are bounded within -s�x�s, where s 

= 3.833 l λ/b, l is the distance of plane 1σ from the dual pinhole, and b is the diameter of 

each pinhole [25]. Therefore, we have     

     0,       for x>s 

=)(xiψ    )(xiΨ   for -s�x�s      (A.3) 

    0,   for x<-s, 

 

where i=1,2. 
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Bearing in mind that both ψ and the irradiance I are functions of x, for apodized wave 

functions, the total radiant flux in (A.2) is reduced to  
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.      (A.4) 
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Figure 1 (a) Laser light impinges upon a dual pinhole and two diffracted beams 1Ψ  and 

2Ψ  emerge. The beams are apodized by an aperture stop AS. (b) The interference 

pattern 12I is observed at plane 1σ . Here V=1, and K=0. The irradiance is measured in 

arbitrary units a.u. corresponding to grey-level intensity ranging from 0 to 255. The red 

curve shows the theoretical decoherent irradiance profile 12
~
I .  

Figure 2 (a) A converging Lens L placed in front of 1σ  produced two well resolved 

images of the pinholes. (b) The irradiance profile of the images 1´ and 2´. The photons 

landing in 1´ originate in pinhole 1, and those landing in 2´ originate in pinhole 2. Here, 

V=0, and K=1. The red curve shows a theoretical irradiance profile for a K=0 case. 

Figure 3 Visibility of an interference pattern is a multi-particle property. The 

interference pattern produced by a single-photon source with (a) 30, (b) 300, and (c) 

3000 photons registered. In contrast, the decoherent distribution of (d) 30, (e) 300, and 

(f) 3000 photons lacks the dark fringes. 

Figure 4 The effect of an opaque obstacle placed at the dark fringe of an interference 

pattern. (a) The planes 0σ and 1σ  are located immediately before and after the obstacle, 

which is a wire shown as the small black disk. The irradiance profile 12I of the coherent 

superposition state 12ψ
, at (b) plane 0σ , and (c) plane 1σ . The irradiance profile 12

~
I of 

a decoherent state, at (d) plane 0σ , and (e) plane 1σ .  

Figure 5 Theoretical simulation of the quantum-mechanical effect of an opaque 

obstacle on the evolution of a Gaussian wave packet for three different positions of the 

obstacle. (a-c) The wave packet directly hits the obstacle, producing significant 

attenuation and diffraction in the transmitted light. (d-f) The wave packet interacts with 

only the lower surface of the obstacle. (g-i) The wave packet nearly misses the obstacle. 

Figure 6 Apodized wave function ψ moving along the z-axis impinges upon an opaque 

obstacle placed at x=u. The transmitted wave function ψ ′ would have the same norm as 
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ψ , if and only if there is a destructive interference at x=u, establishing the presence of 

an interference pattern. 

Figure 7 (a) The configuration testing the effect of the wires in the wire grating (WG). 

(b) Data representing the images of pinholes 1 and 2. No reduction in the resolution of 

the images is found at the image plane 2σ . This implies that no diffraction is produced 

by the WG and thus WWI is still complete so that K=1. For comparison, the red curve 

shows an irradiance profile for a case where K=0. 

Figure 8 Test of Complementarity (a) Control configuration, with both pinholes open 

and no WG in place. The light from image 2´ is directed to detector D2. (b) Simulation 

of decoherent state at 1σ is achieved by closing pinhole 1, and placing the WG in the 

path of 2ψ . The total radiant flux is reduced by R
~

= (6.6± 0.2)%. Compared to control 

data the loss of resolution of the image due to diffraction caused by the WG is clear. (c) 

Both pinholes are open and WG is placed at the dark fringes of the IP. The attenuation 

of the radiant flux of 2´ is found to be R = (-0.1± 0.2)%, which is negligible . Also the 

resolution of the image is only slightly reduced compared to control, since no diffraction 

takes place by WG. Here in violation of PC, V=1, and K=1, in the same experimental 

configuration. 
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